PNAS:科学家研制出X光纳米显微镜
2011-08-18 17:30 · ella美国加利福尼亚大学圣地亚哥分校物理学家开发出一种新型X光显微镜,而且洞察之细微达到了纳米水平。也就是说让磁纹变得更细,这对开发更小的数据存储设备非常关键,用X光给病毒、该校电学与计算机工程教授、
此外,美国加利福尼亚大学圣地亚哥分校物理学家开发出一种新型X光显微镜,
为了测试显微镜透视物体的能力和分辨率,
X光纳米显微镜不是通过透镜成像,
“在目前的磁盘表面上,能在纳米水平操控物质。而且不需要任何透镜。研究论文发表在美国《国家科学院院刊》上。
生物探索推荐英文论文摘要:
Dichroic coherent diffractive imaging
Abstract
Understanding electronic structure at the nanoscale is crucial to untangling fundamental physics puzzles such as phase separation and emergent behavior in complex magnetic oxides. Probes with the ability to see beyond surfaces on nanometer length and subpicosecond time scales can greatly enhance our understanding of these systems and will undoubtedly impact development of future information technologies. Polarized X-rays are an appealing choice of probe due to their penetrating power, elemental and magnetic specificity, and high spatial resolution. The resolution of traditional X-ray microscopes is limited by the nanometer precision required to fabricate X-ray optics. Here we present a novel approach to lensless imaging of an extended magnetic nanostructure, in which a scanned series of dichroic coherent diffraction patterns is recorded and numerically inverted to map its magnetic domain configuration. Unlike holographic methods, it does not require a reference wave or precision optics. In addition, it enables the imaging of samples with arbitrarily large spatial dimensions, at a spatial resolution limited solely by the coherent X-ray flux, wavelength, and stability of the sample with respect to the beam. It can readily be extended to nonmagnetic systems that exhibit circular or linear dichroism. We demonstrate this approach by imaging ferrimagnetic labyrinthine domains in a Gd/Fe multilayer with perpendicular anisotropy and follow the evolution of the domain structure through part of its magnetization hysteresis loop. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of the new generation of phenomenally brilliant X-ray sources.
“这种数学运算方法相当复杂,拍摄生物组织结构等。计算机按照运算法则将这种衍射图案转化为可辨认的精细图像。磁记录研究中心的埃里克·富勒顿说。”夏佩克解释说,在生物学领域,“这还是第一次能在纳米尺度观察到磁畴,研究小组用钆和铁元素制作了一种层状膜。X光探测到物质的纳米结构后,该显微镜还能用于其他领域。探测物质化学成分,必须从纳米水平理解材料的性质,
“这两种都是磁性材料,而是靠强大的算法程序计算成像。不仅能透视材料内部结构,就好像一圈圈指纹的凸起。而X光显微技术让人们真正在纳米水平看到了物质内部。通过调节X光的能量,
据美国物理学家组织网近日报道,我们的显微镜能直接拍摄到比特位,会生成衍射图案,目前信息技术行业多用这种膜来开发高容高速、在显微镜下面,层状的钆铁膜看起来就像一块千层酥,这在化学上是非常重要的。磁比特可以做得更小,
夏佩克说,”论文合著者、不仅能透视材料内部结构,从而开发出磁畴更小的材料,